Théorie du chaos

La théorie du chaos traite des systèmes dynamiques rigoureusement déterministes, mais qui présentent un phénomène fondamental d'instabilité appelé « sensibilité aux conditions initiales » qui, modulo une propriété supplémentaire de récurrence, les rend non prédictibles en pratique à « long » terme.

Qu'est-ce que la « théorie du chaos » ?
Au cours de son histoire, la physique théorique s'était déjà trouvée confrontée à la description de systèmes complexes macroscopiques, comme un volume de gaz ou de liquide, mais la difficulté à décrire de tels systèmes semblait découler du très grand nombre de degrés de liberté internes du système à l'échelle microscopique (atomes, molécules). La mécanique statistique avait dans ce cas permis de rendre compte de façon satisfaisante des propriétés macroscopiques de ces systèmes à l'équilibre. Ce fut donc une grande surprise lorsqu'on s'aperçut à la fin du xixe siècle qu'une dynamique d'une grande complexité pouvait résulter d'un système simple possédant un très petit nombre de degrés de liberté1, pourvu qu'il possède cette propriété de sensibilité aux conditions initiales.

La théorie du chaos s'attache principalement à la description de ces systèmes à petit nombre de degrés de liberté, souvent très simples à définir, mais dont la dynamique nous apparaît comme très désordonnée.

 

LorentzAttracteur de Lorenz

 

 

La théorie du chaos est-elle née dans les années 1970 ?

Lorenz attractor boxed

   Attracteur étrange de Lorenz (1963)
La réponse à cette question est : oui et non.

Non, car le phénomène de sensibilité aux conditions initiales a été découvert dès la fin du xixe siècle par Henri Poincaré dans des travaux concernant le problème à N corps en mécanique céleste (notamment dans le volume 3 des Méthodes Nouvelles de la Mécanique Céleste), puis par Hadamard avec un modèle mathématique abstrait aujourd'hui baptisé « flot géodésique sur une surface à courbure négative ». Cette découverte a entraîné un grand nombre de travaux importants, principalement dans le domaine des mathématiques. Ces travaux sont évoqués dans le paragraphe Développements historiques situé plus loin.
Oui, car ce n’est véritablement que dans les années 1970 que la théorie du chaos s'est progressivement imposée sur le devant de la scène scientifique, opérant une rupture épistémologique forte. Le terme suggestif de « chaos » n'a d'ailleurs été introduit qu'en 1975 par les deux mathématiciens Tien-Yien Li et James A. Yorke3. Otto E. Rössler, connu pour avoir découvert l'un des attracteurs chaotiques le plus étudié (et appelé aujourd'hui attracteur de Rössler), utilisa le terme de « chaos » dans la plupart de ces articles dès 1976. Le caractère tardif de ce changement de paradigme s'explique aisément : la théorie du chaos doit en effet sa popularisation aux progrès fulgurants de l'informatique à partir des années 1960-70. Cette science nouvelle a en effet rendu accessible aux non-mathématiciens la visualisation directe de l'incroyable complexité de ces systèmes dynamiques, auparavant réservée aux seuls « initiés » capables d'absorber le formalisme mathématique idoine.
À titre d'illustration, la figure ci-contre est un exemple typique d'images produites par la théorie du chaos ; il s'agit ici d'un objet géométrique découvert par Lorenz en 1963, et initialement baptisé « attracteur étrange » à la suite de l'introduction de ce concept par David Ruelle et Floris Takens.

La théorie du chaos est une véritable théorie scientifique. Elle repose sur la représentation des solutions des équations différentielles dans l'espace des phases associé : représenter les solutions sous forme de trajectoire dans l'espace plutôt que l'une des variables en fonction du temps permet de révéler la structure sous-jacente : c'est ce qui conduit à affirmer que la théorie du chaos contribue à «trouver de l'ordre caché sous un désordre apparent.». L'attracteur de Lorenz précédemment représenté est un exemple d'une évolution d'un système dans l'espace des phases. Au déterminisme Laplacien permettant la prédiction sur des temps arbitrairement long a succédé un déterminisme de nature fondamentalement différente. Il peut être approché de manière probabiliste et alors caractérisé par l'existence d'invariants prenant la forme de mesures de probabilités, de dimension fractale… ou par une description topologique des attracteurs. Toutes les sciences, y compris sociales, sont concernées[réf. nécessaire] par ce changement de paradigme ; en particulier, cette théorie peut inclure l'organisation du vivant dans la nature.

Date de dernière mise à jour : 14/06/2015

×