Expansion de l'Univers

En cosmologie, l'expansion de l'Univers est le nom du phénomène qui voit à grande échelle les objets composant l'univers (galaxies, amas, …) s'éloigner les uns des autres. Cet écartement mutuel, que l'on pourrait prendre pour un mouvement des galaxies dans l'espace, s'interprète en réalité par un gonflement de l'espace lui-même, les objets célestes étant de ce fait amenés à s'éloigner les uns des autres (voir plus bas). À plus petite échelle, l'expansion n'affecte pas la taille des galaxies elles-mêmes, la gravité « intérieure » ayant un effet prédominant.

L'expansion de l'univers est la solution théorique trouvée par Friedmann pour rendre compte du fait que l'univers ne se soit pas déjà effondré sous l'effet de la gravitation. Elle permet de faire l'économie de la constante cosmologique, artifice introduit par Einstein, fermement attaché à l'idée d'un univers statique.

Du point de vue observationnel, l'expansion se traduit par une augmentation de la longueur d'onde de la lumière émise par les galaxies : c'est le phénomène de décalage vers le rouge. Ce décalage n'est pas homologue à l'effet Doppler, qui est dû au déplacement à travers l'espace de l'objet observé ; il s'agit ici de l'expansion de l'espace lui-même. On parle de décalage spectral cosmologique.

La découverte de ce décalage vers le rouge est attribuée à l'astronome américain Edwin Hubble en 1929, bien qu'il ait été implicitement mis en évidence 15 ans plus tôt par Vesto Slipher et prédit, voire mesuré, par Georges Lemaître à la fin des années 1920. De façon concomitante, l'interprétation physique correcte de ce décalage vers le rouge est donnée par la théorie de la relativité générale d'Albert Einstein, qui permet de décrire la dynamique de l'Univers dans son ensemble. L'expansion de l'Univers est de fait une vérification remarquable de la relativité générale, même si, de façon quelque peu surprenante, Albert Einstein lui-même n'y a pas adhéré initialement, tentant même d'en proposer une explication alternative, la lumière fatiguée, théorie depuis longtemps complètement abandonnée.

La conséquence immédiate de l'expansion de l'Univers est que celui-ci était par le passé plus dense et donc plus chaud. Le concept du Big Bang, qui repose sur l'idée qu'une telle époque dense et chaude a effectivement existé, en découle naturellement et peut donc être considéré comme établi.

Du point de vue théorique, l'expansion de l'Univers est contenue dans les modèles issus de la relativité générale décrivant l'Univers dans son ensemble. De telles constructions sont appelées de façon naturelle modèles cosmologiques. Les équations qui décrivent l'expansion de l'Univers dépendent des propriétés de la ou des formes de matière qui emplissent l'Univers. Elles s'appellent équations de Friedmann.

Expansioncake svgL'expansion de l'Univers imagée par le gonflement d'un gâteau aux raisins.

By Raude CC BY-SA 3.0 via Wikimedia Commons

Accélération de l'expansion de l'Univers

L'accélération de l'expansion de l'Univers est le nom donné au phénomène qui voit la vitesse de récession des galaxies par rapport à la Voie lactée augmenter au cours du temps. Ce phénomène a été mis en évidence en 1998 par deux équipes internationales, le Supernova Cosmology Project, mené par Saul Perlmutter, et le High-Z supernovae search team, mené par Adam Riess, ce qui leur vaudra l'obtention du prix Nobel de physique en 2011.

Hypothèses explicatives
L'interprétation la plus simple de la découverte de l'accélération de l'expansion de l'Univers est qu'il existe dans l'Univers une forme d'énergie, traditionnellement appelée énergie noire (ou énergie sombre, traduction dans un cas comme dans l'autre du terme anglais dark energy) aux propriétés atypiques, puisque sa pression doit être négative. La nature exacte de cette énergie noire n'est pas connue à ce jour, mais plusieurs candidats possibles existent. Le plus simple d'entre eux est la constante cosmologique, mais il en existe d'autres comme la quintessence. Cependant, aucune détection directe de cette énergie ne semble envisageable à l'heure actuelle, seule son influence gravitationnelle à très grande échelle étant mesurable.

320px two redshiftsLe décalage vers le rouge peut être provoqué par effet Doppler-Fizeau ou par la dilatation de l'espace provoquée par l'expansion de l'Univers.

By Brews ohare CC BY-SA 3.0, via Wikimedia Commons

L'expansion de l'Univers

Redshift svgLorsqu'un astre se déplace, ses raies spectrales sont également décalées.

By Georg Wiora (Dr. Schorsch) créé cette image de la JPG originale.Les travaux dérivés: Kes 4 7 (Fichier: Redshift.png) CC BY-SA 2.5.CC-BY-SA-3.0, via Wikimedia Commons

Actuellement, constatant un décalage vers le rouge de la lumière émise par des sources cosmologiques quasiment proportionnel à leur distance, les modèles cosmologiques dominants l'interprètent comme un effet de l'expansion de l'Univers.

Il ne s'agit donc plus d'un effet Doppler comme on le présente encore parfois aujourd'hui, mais bien d'un effet de relativité générale qui se comprend quantitativement en disant que l'expansion, en « allongeant » l'Univers, allonge aussi la longueur d'onde de tous les photons de l'Univers. Il y a « comobilité » des galaxies qui sont entraînées par cette expansion.

 

Date de dernière mise à jour : 30/08/2015