Les plus grandes explosions de l'Univers

Certains des sursauts gamma les plus longs sont produits par des magnétars

8 juillet 2015

 

Des observations effectuées depuis les Observatoires de La Silla et de Paranal de l'ESO au Chili ont pour la première fois permis d'établir un lien formel entre un sursaut gamma de très longue durée et une explosion de supernova particulièrement lumineuse. Il est ainsi apparu que cette supernova n'était pas alimentée par l'énergie issue de désintégrations radioactives, mais par l'énergie produite lors de la désagrégation de champs magnétiques ultra puissants autour d'un objet exotique baptisé magnétar. Ces résultats seront publiés au sein de l'édition du 9 juillet 2015 de la revue Nature.

Les sursauts gamma (GRBs) résultent de phénomènes explosifs parmi les plus puissants survenus depuis le Big Bang. Ils font l'objet de détections par des télescopes spatiaux sensibles à ce type de rayonnement de haute énergie incapable de pénétrer l'atmosphère terrestre, puis d'un suivi, à de plus courtes fréquences, par d'autres télescopes disposés au sol et dans l'espace.

Bien souvent, les GRBs ne durent que quelques secondes. Dans quelques très rares cas toutefois, leur durée peut avoisiner plusieurs heures [1]. Un tel GRB de très longue durée fut détecté par le satellite Swift le 9 décembre 2011 puis baptisé GRB 111209A. Il fut l'un des GRBs les plus longs et les plus brillants jamais observé.

L'émission rémanente de ce sursaut a été étudiée au moyen de l'instrument GROND qui équipe le télescope MPG/ESO de 2,2 mètres à La Silla et de l'instrument X-shooter installé sur le Très Grand Télescope (VLT) à Paranal. La signature claire d'une supernova par la suite baptisée SN 2011kl fut détectée. C'est la toute première fois qu'une supernova est associée à un GRB ultra-long [2].

L'auteur principal du nouvel article, Jochen Greiner de l'Institut Max Planck dédié à la Physique Extraterrestre, Garching, Allemagne, revient sur cette découverte : “Puisqu'un sursaut gamma accompagne une supernova sur 10 000 ou 100 000 seulement, l'étoile qui a explosé doit présenter quelque particularité peu commune. Les astronomes avaient supposé que ces GRBs provenaient d'étoiles très massives – quelque 50 fois plus massives que le Soleil – et qu'ils signalaient la formation d'un trou noir. Nos nouvelles observations de la supernova SN 2011kl, découverte après le GRB 111209A, remettent en question l'application de ce postulat aux GRBs ultra-longs.”

Dans le scénario privilégié de l'effondrement d'une étoile massive (parfois baptisé collapsar), la lente émission rémanente dans les domaines optique et infrarouge en provenance de la supernova est supposée résulter de la désintégration radioactive du Nickel 56 produit lors de l'explosion [3]. Les observations effectuées au moyen de GROND et du VLT ont toutefois montré, pour la première fois, que ce scénario ne pouvait s'appliquer au GRB 111209A [4]. D'autres hypothèses ont également été écartées [5].

Une seule explication concordait avec les observations de la supernova consécutive au GRB 111209A : celle-ci devait être alimentée par un magnétar – une étoile à neutrons de faibles dimensions effectuant plusieurs centaines de rotations par seconde et dotée d'un champ magnétique bien plus puissant que celui des étoiles à neutrons dites normales, ou pulsars radio [6]. Les magnétars sont supposés être les objets les plus fortement magnétisés de l'Univers connu. Pour la première fois, un lien formel entre une supernova et un magnétar a pu être établi.

Paolo Mazzali, co-auteur de l'étude, revient sur l'importance de ces découvertes : “Les nouveaux résultats apportent une réelle preuve de l'existence d'une relation inattendue entre les GRBs, les supernovae très lumineuses et les magnétars. Certaines de ces relations avaient été entrevues au plan théorique ces dernières années, mais l'établissement de cette relation globale constitue un tout nouveau développement, fort excitant.”

“L'exemple de SN 2011kl/GRB 111209A nous oblige à formuler une alternative au scénario de l'effondrement. Cette découverte nous apporte une vision renouvelée et éclairée des GRBs ainsi que des processus à l'œuvre”, conclut Jochen Greiner.

©/esa

×